Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Plant Cell ; 35(8): 3053-3072, 2023 08 02.
Article En | MEDLINE | ID: mdl-37100425

The ketocarotenoid fucoxanthin and its derivatives can absorb blue-green light enriched in marine environments. Fucoxanthin is widely adopted by phytoplankton species as a main light-harvesting pigment, in contrast to land plants that primarily employ chlorophylls. Despite its supreme abundance in the oceans, the last steps of fucoxanthin biosynthesis have remained elusive. Here, we identified the carotenoid isomerase-like protein CRTISO5 as the diatom fucoxanthin synthase that is related to the carotenoid cis-trans isomerase CRTISO from land plants but harbors unexpected enzymatic activity. A crtiso5 knockout mutant in the model diatom Phaeodactylum tricornutum completely lacked fucoxanthin and accumulated the acetylenic carotenoid phaneroxanthin. Recombinant CRTISO5 converted phaneroxanthin into fucoxanthin in vitro by hydrating its carbon-carbon triple bond, instead of functioning as an isomerase. Molecular docking and mutational analyses revealed residues essential for this activity. Furthermore, a photophysiological characterization of the crtiso5 mutant revealed a major structural and functional role of fucoxanthin in photosynthetic pigment-protein complexes of diatoms. As CRTISO5 hydrates an internal alkyne physiologically, the enzyme has unique potential for biocatalytic applications. The discovery of CRTISO5 illustrates how neofunctionalization leads to major diversification events in evolution of photosynthetic mechanisms and the prominent brown coloration of most marine photosynthetic eukaryotes.


Diatoms , Xanthophylls , Molecular Docking Simulation , Xanthophylls/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Diatoms/genetics , Diatoms/metabolism
2.
ACS Cent Sci ; 9(2): 217-227, 2023 Feb 22.
Article En | MEDLINE | ID: mdl-36844503

The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, noncovalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment.

3.
ACS Phys Chem Au ; 2(2): 143-155, 2022 Mar 23.
Article En | MEDLINE | ID: mdl-36855509

Calcium ions are important messenger molecules in cells, which bind calcium-binding proteins to trigger many biochemical processes. We constructed four model systems, each containing one EF-hand loop of calmodulin with one calcium ion bound, and investigated the binding energy and free energy of Ca2+ by the quantum mechanics symmetry-adapted perturbation theory (SAPT) method and the molecular mechanics with the additive CHARMM36m (C36m) and the polarizable Drude force fields (FFs). Our results show that the explicit introduction of polarizability in the Drude not only yields considerably improved agreement with the binding energy calculated from the SAPT method but is also able to capture each component of the binding energies including electrostatic, induction, exchange, and dispersion terms. However, binding free energies computed with the Drude and the C36m FFs both deviated significantly from the experimental measurements. Detailed analysis indicated that one of main reasons might be that the strong interactions between Ca2+ and the side chain nitrogen of Asn/Gln in the Drude FF caused the distorted coordination geometries of calcium. Our work illustrated the importance of polarization in modeling ion-protein interactions and the difficulty in generating accurate and balanced FF models to represent the polarization effects.

4.
Toxicol Appl Pharmacol ; 362: 59-66, 2019 01 01.
Article En | MEDLINE | ID: mdl-30352208

Methylmercury (MeHg+) is an extremely toxic organomercury cation that can induce severe neurological damage. Once it enters the body, methylmercury binds to amino acids or proteins containing free sulfhydryl groups. In particular, methylmercury is known to bind with human serum albumin (HSA) in human plasma; however, the effects of methylmercury-HSA conjugate (MeHg-HSA) on the central nervous system (CNS) are not fully understood. In the present study, we used the microglial cell line N9 as the target cells to evaluate the effect of MeHg-HSA on physiological function of the CNS preliminarily. The various factors in the cell culture were monitored by MTT assay, total lactate dehydrogenase assay, ELISA, qPCR, Western blot and flow cytometry techniques. The results showed that low-dose treatment with MeHg-HSA activated N9 cells, promoting cell proliferation and total cell number, enhancing NO and intracellular Ca2+ levels, and suppressing the release of TNFα and IL1ß without cytotoxic effects; while high-dose MeHg-HSA exhibited cytotoxic effects on N9 cells, including promoting cell death and increasing the secretion of TNFα and IL1ß. These results indicate that MeHg-HSA causes hormesis in microglia N9 cells. Furthermore, ERK/MAPKs and STAT3 signaling pathways related to the hormesis of MeHg-HSA on N9 cells. In addition, low dose of MeHg-HSA might be viewed as something very close to a lowest observed adverse effect level (LOAEL) for N9 cells. These findings will be useful for investigating the hormesis mechanism of MeHg+ and exploring the specific functions of MeHg-sulfhydryl conjugates on the central nervous system.


Methylmercury Compounds/pharmacology , Microglia/drug effects , Serum Albumin, Human/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Hormesis/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Methylmercury Compounds/chemistry , Mice , Microglia/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide/metabolism , STAT3 Transcription Factor/metabolism , Serum Albumin, Human/chemistry , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
5.
Toxicology ; 408: 62-69, 2018 09 01.
Article En | MEDLINE | ID: mdl-29981841

Mercury chloride (HgCl2), a neurotoxicant that cannot penetrate the blood-brain barrier (BBB). Although when the BBB are got damaged by neurodegenerative disorders, the absorbed HgCl2, mainly in form of Hg (II)-serum albumin adduct (Hg-HSA) in human plasma, can penetrate BBB and affect central nervous system (CNS) cells. Current study planned to evaluate the effect of Hg-HSA on the physiological function of N9 microglial cells. At low dosage (15 ng/mL) of Hg-HAS, the observed outcomes was: promoted cell propagation, Nitric Oxide (NO) and intracellular Ca2+ levels enhancement, suppressed the release of TNF-α and IL-1ß and inhibited cell proliferation. At high dosage (15 µg/mL) we observed decline in NO and intracellular Ca2+ levels, and increment in the release of TNF-α and IL-1ß. These biphasic effects are similar to hormesis, and the hormesis, in this case, was executed through ERK/MAPKs and JAK/STAT3 signaling pathways. Study of quantum chemistry revealed that Hg2+ could form stable coordination structures in both Asp249 and Cys34 sites of HSA. Although five-coordination structure in Asp249 site is more stable than four-coordination structure in Cys34 site but four-coordination structure is formed easily in-vivo in consideration of binding-site position in spatial structure of HSA.


Extracellular Signal-Regulated MAP Kinases/metabolism , Hormesis , Janus Kinases/metabolism , Mercury Poisoning, Nervous System/etiology , Microglia/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Binding Sites , Calcium/metabolism , Cell Line , Cell Survival/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mercury Poisoning, Nervous System/enzymology , Mercury Poisoning, Nervous System/pathology , Mice , Microglia/enzymology , Microglia/pathology , Molecular Dynamics Simulation , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Protein Binding , Protein Conformation , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
...